Development and validation of a machine learning system for automated routine 2-dimensional morphometric measurements on female pelvic MRI

Sam White¹, Steven Knox^{2,3}, Jodie Avery¹, Louise Hull¹, Hu Wang⁴, Yuan Zhang⁴, Gustavo Carneiro^{4,5}, Minh-Son To^{2,4,6}

¹Robinson Research Institute, University of Adelaide, Australia ²South Australia Medical Imaging, SA Health, Australia ³Benson Radiology, South Australia, Australia ⁴Australian Institute for Machine Learning, University of Adelaide, Australia ⁵Centre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom ⁶Flinders Health and Medical Research Institute, Flinders University, Australia

Background

- Morphometric measurements in 2D and 3D assist in diagnosis and assessment of pathology on pelvic MRI. e.g.
- \Rightarrow The pubococcygeal line represents the level of the pelvic floor for grading pelvic organ prolapse [1].
- \Rightarrow A short anogenital distance is considered a strong diagnostic marker of endometriosis [2].
- Automating extraction of morphometric measurements can standardise and improve the efficiency of reporting.
- The purpose of this study was to develop a deep learning system to automatically perform routine morphometric measurements on female pelvic MRI.

Methods

- 300 sagittal T2 turbo spin echo (TSE) female pelvic MRI scans from the South Australia Medical Imaging (SAMI) database were extracted and split into a training/validation (200 and 50 scans) and test (50 scans) sets.
- Training/validation scans were annotated (SW) with ITK-SNAP [3] to define anogenital distance, pubococcygeal (PC) line, H-line, M-line.
- We utilised and compared image classification networks with various backbones pre-trained on the ImageNet database [4] and compared with landmark detection models based on the U-Net architecture [5].
- Data augmentation to increase training data diversity included rotations (± 30°), brightness (± 20%) and contrast (± 20%) scaling.
- Testing was performed by comparing annotations predicted by the models to those made by a Clinical Radiologist (SK).
- Measurement accuracy was assessed by comparing mean absolute error (MAE) between the ImageNet and U-Net models.

Results

1. Anatomical landmarks

1. Tomsic MV et al, Appl Radiol, 2017;46(8):21-27

4. Deng J et al, Proc IEEE Conf CVPR, 2009:248-255

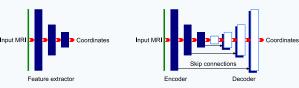
2. Crestani A et al, *Hum Reprod Open*, 2021(1):hoab003 3. Yushkevich PA et al, *Annu Int Conf IEEE Eng Med Biol Soc*, 2016:3342-3345

SOUTH

5. Ronneberger O et al, MICCAI 2015, Lecture Notes in Computer Science, vol 9351

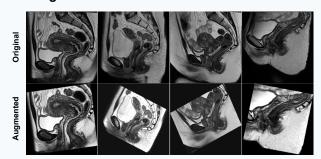
- 1. Fourchette (Red)
- 2. Centre anus (Green)
- 3. Posterior aspect inferior border pubic symphysis (Dark blue) 4. Anterior final coccygeal joint
- (Yellow) 5. Posterior aspect anorectal
- junction (Light blue) 6. Where M-line meets pubococcygeal line (Purple)

2. Neural network architectures A. ImageNet backbone

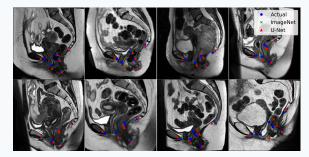


B. U-Net

3. Data augmentation



4. Example predictions



5. Model performance

			Validation set		Test set		
L	andmark	ImageNet MAE (mm)	U-Net MAE (mm)	P-value	ImageNet MAE (mm)	U-Net MAE (mm)	P-value
1	I Fourchette	4.55	4.82	0.48	6.86	6.57	0.30
2	2 Cent anus	2.76	1.69	<0.001	3.25	2.25	<0.001
3	3 Pub symph	2.55	0.90	<0.001	3.32	4.85	<0.001
4	Coccyg jnt	2.390	1.89	0.0052	3.02	2.71	0.37
5	5 Anorect junc	3.18	2.88	0.23	4.71	4.68	0.91
6	6 M-line, PC	2.37	2.69	0.11	3.25	3.63	0.092

Conclusions

- Deep learning convolutional network models show promising performance in the automated detection and localisation of important anatomical landmarks on female pelvic MRI.
- Validation on external, multi-centre datasets containing a broad range of pathologies will enable deployment in clinical radiology workflows.

Funding and acknowledgements

This work received funding from the Australian Government through the Medical Research Futures Fund: Primary Health Care Research Data Infrastructure Grant 2020 and from Endometriosis Australia.

Ethics approval for this study was granted by the Southern Adelaide Clinical HREC.

References

AUSTRALIAN INSTITUTE FOR MACHINE LEARNING

