IMAGENDO[®]: Non-Invasive diagnosis of endometriosis using machine learning **1. Background:**

Endometriosis

- Causes period pain
- Normalised symptoms delay diagnosis
- Fear of malignant causes.

2. Aim:

- No accessible way to diagnose.
 - Barriers in diagnosis
 - Not identified by standard transvaginal ultrasound
 - Specialist skills are needed.

IMAGENDO aims to remove this surgical diagnostic barrier by developing a novel, accessible, cost-effective, non-invasive diagnostic tool for endometriosis, using an Artificial Intelligence (AI) algorithm.

3. Methods:

- Expert, interdisciplinary team
- Deliver a new diagnostic tool for endometriosis,
- Create AI algorithm combining diagnostic capacity of endometriosis TVUS and endometriosis MRI scans
- Determine the probability of endometriosis,
- Optimising and validating the diagnostic accuracy of Imagendo algorithm

Avery J¹; Deslandes, A¹; Leonardi, M^{1.4}; Condous G^{1,2}; Carneiro[,] G^{1,3}, Hull, L¹. 1. Robinson Research Institute, Uni of Adelaide 2. Sydney Medical School Nepean, Uni of Sydney,

- 3. Australian Institute of Machine Learning, Uni of Adelaide, 4. Mc Master Uni, Hamilton, Canada

4. Results:

- Strong social media recruitment
- Retrospective:
- 200 patients (eMRIs), 200 patients (eTVUS)
- Prospective: 115 patients (imaging and surgical data)

Area under the curve = 97% **Accuracy = 95%**

5. Conclusions:

IMAGENDO will:

- Reduce hospital admissions and laparoscopic surgery;
- Reduce diagnostic delay,
- Improve mental health by validating patient's pain experience;
- Instigate preventative interventions for chronic pain and infertility;
- Improve compliance with timely, targeted, effective treatments.

https://imagendo.org.au/

https://www.facebook.com/Endostudy

篇韻

SCAN ME

IMAGENDO

Table 1: "Sliding sign " test set

	Positive Detection	Negative Detection
Positive by experts	13	7
Negative by experts	2	174

Maicas G, et al. Deep learning to diagnose Pouch of Douglas obliteration using ultrasound sliding sign. Reprod Fertil. 2021